不純物を注入したシリコンウェハの活性化(高密度・高速化)

フラッシュランプ装置の図

半導体が目指す方向として、高密度とスイッチング速度の高速化が求められています。
これを実現するには薄い半導体層を作る技術が必要となっています。半導体層を作るには、シリコンウェハに不純物(異種元素)を注入し(ドーピング)、壊れた結晶構造を回復するため、熱処理により活性化を行います。この時、熱が深くまで入ると、不純物が深い層まで拡散して厚い半導体層になってしまいますが、フラッシュアニールは極く表面しか熱処理温度に達しないため、不純物が拡散せず、極く薄い半導体層を作ることができます。

太陽電池の薄膜化(基材への熱影響抑制・低コスト化)

太陽電池はシリコン材料が高価格なため、実用化には低コスト化が研究の対象となっています。高コストのシリコン使用量を減らすために、太陽電池を薄く作る「薄膜化」技術が追及されています。シリコン系の太陽電池での薄膜化は、多結晶シリコンとアモルファスシリコンを用いる方法で進んでおり基材に蒸着したシリコンを熱処理して結晶化を行っています。特に、低コスト化のためにロール・トウ・ロールが可能なプラスチックフィルムを基材に使用することも考えられており、基材への影響が少ないフラッシュアニールに期待があつまっています。
また、低コスト化のため高価なシリコンや希少金属を使用しない化合物薄膜太陽電池では、同様に熱処理による結晶化の際に基材への影響が少ないフラッシュアニールが注目されています。

強誘電体メモリ用PZT膜の結晶化(基材への熱影響抑制)

ICカードやモバイル機器などに広く使われている強誘電体メモリに使用する強誘電体キャパシタの製膜技術として、PZT(強誘電体材料)膜を結晶化する際に、基材への影響が少ないフラッシュアニールが有効であると考えられています。

お問い合わせ

製品に関するお問い合わせ、サービスや校正に関するお問い合わせなどは、以下ページの問い合わせフォームよりお願いいたします。 問い合わせページへ 弊社での個人情報の取り扱いについてはこちらから